报告题目:Fast Fourier Solvers for the Tensor Product High-Order FEM for PDEs
主 讲 人:Alexander A. Zlotnik 教授(俄罗斯国立高等经济大学)
报告邀请人:李树光 副教授
报 告 时间:2025年04月30日下午13:30-15:30
报告地点:数理楼 224
报告摘要:Logarithmically optimal in theory and fast in practice, direct algorithms for implementing a tensor product finite element method (FEM) based on tensor products of 1D high-order FEM spaces on multi-dimensional rectangular parallelepipeds are proposed for solving the N-dimensional Poisson-type equation with Dirichlet boundary conditions. The algorithms are based on well-known Fourier approaches. The key new points are a detailed description of the eigenpairs of the 1D eigenvalue problems for the high-order FEM, as well as fast direct and inverse eigenvector expansion algorithms that simultaneously employ several versions of the fast Fourier transform. Results of numerical experiments in the 2D and 3D cases are presented. The algorithms can be used in numerous applications, in particular, to implement tensor product high-order finite element methods for various time-dependent partial differential equations, including the multidimensional heat, wave, and Schrödinger ones.
个人简历:Alexander A. Zlotnik是俄罗斯国立高等经济大学教授,物理数学科学大博士。Alexander A. Zlotnik教授毕业于莫斯科国立大学,历任俄罗斯科学院应用数学研究所高级研究员、莫斯科国立师范大学副教授、莫斯科动力学院副教授、教授等。主要从事计算数学和偏微分方程数值解领域的研究,包括了椭圆、抛物、双曲型方程和薛定谔方程的有限元法和有限差分法的误差估计、稳定性分析、分裂方法、紧致格式等,以及可压缩纳维-斯托克斯方程和欧拉方程组的存在性、唯一性、正则性、大时间行为的理论分析和有限差分方法等数值求解。Alexander A. Zlotnik教授先后获得了1998-2000年度和2000-2003年度的俄罗斯国家科学奖,2022年SCI期刊“Entropy”杰出评审等。目前,已发表了220余篇高水平学术文章,担任了“Mathematical Modelling and Analysis”,“Computational Methods in Applied Mathematics”,“Applicable Analysis”,“Entropy”,“Symmetry”等期刊的编委。